Critical Pressure for Weakening of Size-induced Stiffness in Si$_3$N$_4$ and CeO$_2$ Nanocrystals and the Resulting Mechanism

Zhongwu Wang1, C. S. Zha2, Yusheng Zhao1, David Schiferl1, and R. T. Downs3

1Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY
3Department of Geosciences, University of Arizona, Tucson Arizona 85721

Nanocrystalline materials with particle sizes of 1-100 nm are of current interest because they display novel physical and chemical properties that may differ from those of their corresponding bulk materials [1]. The structural stability of nanocrystalline material is of particular interest, especially when related to first-order transformations, because of its relevance to many research areas, including the engineering of materials with enhanced mechanical properties [2]. Previous high-pressure studies indicated a correlation between increasing transition pressure and decreasing particle size, or vice versa. These nanocrystals exhibit a higher bulk modulus than their bulk counterparts. However, recent investigations demonstrate that the compressibilities of materials with a large stability range of pressures (i.e. they do not undergo first-order transformations) do not change with particle size. In order to explore the potential mechanism and connection between these two types of compression behaviors, we selected recently synthesized cubic-spinel structure Si$_3$N$_4$ and cubic CeO$_2$ nanocrystals. The samples were studied by using a Diamond Anvil Cell together with high-resolution synchrotron radiation. Our results indicate that the particle size effect on compressibility becomes insignificant above a critical pressure for the two nanocrystals.

As shown in Figure 1, the compressibility of spinel Si$_3$N$_4$ nanocrystals increases when the pressure is raised above ~40 GPa [3]. Si$_3$N$_4$ nanocrystals initially exhibit an extremely high bulk modulus of 685(45) GPa. But, above 40 GPa, the bulk modulus is reduced to 415(10) GPa. Thus, a critical pressure of ~40 GPa was determined that signifies the onset of size-induced weakening of elastic stiffness in nanocrystalline Si$_3$N$_4$. The same pressure-induced phenomenon was observed in CeO$_2$ nanocrystals (Figure 2) [4]. The pressure induced weakening effect takes place at ~20 GPa. The bulk modulus was reduced to 230(10) GPa from 328 (12) GPa. Enhanced surface energy contributions to the shell layers of nano-particles and the resulting effect on the corresponding large d-spacing planes are used to easily explain the increased bulk modulus below the critical pressure, but the pressure induced weakening effect still remains unclear.

![Fig 1: The EOS curves fitted from the volumetric data obtained at pressures below and above 40 GPa, respectively. Note: data obtained previously and at decompression in this study are also presented for comparison.](image1)

![Fig 2: Room temperature equation-of-state data for bulk and nanocrystalline CeO$_2$.](image2)
In order to explore such a novel pressure-induced phenomenon, we combined the bulk pressure standard platinum and CeO$_2$ nanocrystals to compare the pressure induced growth of particle size [4]. As shown in Figure 3, comparison of line broadenings of x-ray diffraction peaks of platinum standard and CeO$_2$ indicates that a significant growth of particle size in CeO$_2$ appears at a pressure of ~20 GPa. Thus, it is concluded that the weakening of elastic stiffness is due to a pressure-induced growth of particle size. This study provided a reasonable explanation for the existing irreconcilable compression behaviors of different nanocrystals.

![Graphs showing FWHM vs Pressure for Platinum and CeO$_2$ Nanocrystals](image)

Fig 3: Comparison of the FWHM of x-ray of 111 diffraction peaks between platinum standard and CeO$_2$ nanocrystals under pressures.

References: