

CESR Update

Jim Shanks

On behalf of the CESR Accelerator Group

Two Years Ago...

One Year Ago...

- Exactly one year after going dark for the upgrade, we have delivered x-rays to four end stations (Sectors 1+7) plus one front-end (Sector 2A/B), with 50mA+ at 6.0GeV
- <u>Tentative plan</u>: Install Sector 3 IDs next Monday, Sector 4 IDs two weeks after that 2020.06.09 J. Shanks - CESR Update

November 2019

Serving users at all subscribed end stations!

Since Then...

- Routine user operations began in October '19
 - Starting at 50mA
 - 75mA in mid-February
 - 100mA in mid-March
- CHESS operations approved up to: **100mA**
 - Need characterization of CHESS optics to proceed to higher current
- Highest-allowed current with L0 occupied: **150mA**
 - Working toward approval for 200mA operations this fall
- Highest current achieved with L0 secured: **200mA**
 - Sustained for several hours before returning to normal operating conditions

Refinements in the Last Year

- "Model" vs. "as-built" layouts brought into agreement
 - Improved optics corrections
 - Improved reproducibility of conditions
- Updated lattice loaded in January
 - Improved masking from collimators
 - Revised sextupole distribution
- Increased transfer rep rate from synch: $30Hz \rightarrow 60Hz$
 - Faster recovery from beam loss
 - Shorter top-off times
- Improved injection efficiency up to 60%+ capture from synch

Rapid Position Corrections

- Previously, would correct positions once per topoff (5-10mins)
- Tower de-icing would induce thermal transient in CESR cooling
 - Generated <u>horizontal</u> displacement of positron beam of order ±40μm at CHESS source points
- New correction scheme interleaves H + V corrections every 10 seconds

"[There] is a kind of integrity, if you look on every exit as an entrance somewhere else."

- Rosencrantz and Guildenstern are Dead

"[There] is a kind of integrity, if you look on every exit as an entrance somewhere else."

- Rosencrantz and Guildenstern are Dead

"Always look on the bright side of life." — Monty Python's Life of Brian

Operations in the Time of CoVID-19

- Rules are changing almost daily...
- Cornell has agreed to allow CESR and CHESS to start up for CoVID-19 research on Sector 7B2
 - See after-dinner speaker Rick Cerione
- Accelerator start-up completed with as much remote operation as possible
 - Surprisingly smooth recovery beam stored almost immediately
 - Operations-ready conditions demonstrated at 100mA within days of startup
 - Remainder of available time devoted to diagnostics of operational "quirks," developing future modes of operation, and preparing for reopening other beamlines
- New York's phased reopening research for "health and disease, agriculture/food, and national defense" is now allowed by the state
 - Starting up Sectors 1, 3, and 7 as we speak

What's Next? → Summer Down Activities

Nike-Zeus PS

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

RF Power Supplies

Nike-Zeus and Hipotronics supplies:

- Both supplies unregulated
- Footprint is too large for available space

SLAC supplies:

- Regulated, adjustable, low ripple DC
- Can be adjusted for maximum klystron DC to RF efficiency
- 2 SLAC supplies: one for CESR, one for CBETA
- NO SPARE ON SITE

Transformer Pad Work

Photos courtesy Rich Gallagher, Jerry Codner

Spare Dipole Power Supply

Reliability and obsolescence issues

- Simplified design fewer boards
- Improved reliability, interlocking
- Repairable with modern components

Slides courtesy Len Hirshman¹⁵

Fall 2020 Run Plans

The Road to 200mA

• Summer 2020

- Additional cooling on linestops, sliding joints
- Refinement of shielding between CESR and CHESS
- Fall 2020
 - Characterization of CHESS beamlines at higher current (> 125mA)
 - Certification of shielding for 200mA operations
 - Characterization of heat loads in CESR and CHESS at 200mA

Position Corrections

New design is aimed at being more extensible, flexible, and user-friendly

Old software:

- FORTRAN90
- Separate instances run through scripts:
 - Auto: continuously running
 - Manual: run one correction and exit
- No GUI
- All detectors/bumps have the same weight in the Figure of Merit (FoM)

New software:

- Java
- One multithreaded program running as a cluster service, able to run multiple modes
- GUI front-end with live plots
- Ability to assign different weights to each individual element (detector, bump change, steering strength/threshold)

18

Timing Mode @ CHESS

See "Characterizing nanosecond dynamics with X rays Workshop" tomorrow for more details

The Short Version:

- As other light sources push toward the diffraction limit, they lose the ability to fill to high bunch current
- With CHESS running singlebeam, there is potential for increased flexibility in bunch patterns
- What novel experiments might this enable?

Time (EDT)	Session	Presenter
9:00 - 9:15	Introduction	Todd Hufnagel, JHU
9:15 - 9:45	An overview of the development of dynamic experiment capabilities at a synchrotron source	Brian Jensen, LANL
9:45 - 10:15	CESR as a Source for Timing Experiments	Jim Shanks, CHESS
10:15 - 10:45	Detecting photons - What modern detectors can and can't do	Julian Becker, CHESS/DESY
10:45 - 11:00	Break	
11:00 - 11:30	Imaging: Incipient Fracture of Ceramics Under Impact	Brian Schuster, ARL
11:30 - 12:00	Time-resolved x-ray diffraction for exploring strength, phase transitions, and plasticity	Joel Bernier, LLNL
12:00 - 12:30	Ultra-fast EXAFS spectroscopy at the National Ignition Facility	Federica Coppari, LLNL
12:30 - 1:00	Lunch break	
1:00 - 1:30	Probing Dynamic Shock Behavior in Advanced Materials using In-Situ Phase Contrast Imaging	Brittany Branch, Sandia
1:30 - 2:00	Micro-scale ballistic experiments for materials characterization at high strain rates	Debjoy Mallick, ARL
2:00 - 2:30	Timing and Triggering Needs for the Measurement of Energy Release Rate of High Explosives	Laura Smilowitz, LANL
2:30 - 2:45	Break	
2:45 - 3:15	Diagnostic targets for understanding the fragmentation and combustion of reactive materials	Joe Hooper, NPS
3:15 - 3:45	The Role of Defects on Performance	Ellen Cerreta, LANL
3:45 - 4:15	Dynamic compression response of heterogeneous materials	Mukul Kumar, LLNL
4:15 - 4:30	Wrap-up/Path forward	Todd Hufnagel, JHU Brian Schuster, ARL

Timing Mode @ CHESS

Several bunch patterns under consideration

- Need input from users to identify what patterns are <u>desirable</u>
- Need Machine Studies to identify what patterns are <u>feasible</u>

Timing Mode @ CHESS

Several bunch patterns under consideration

- Need input from users to identify what patterns are <u>desirable</u>
- Need Machine Studies to identify what patterns are <u>feasible</u>

→ Possibility of testing Timing Mode as soon as Fall 2020

TRIBS

- Excite individual bunches onto alternate trajectory
- May enable complementary capabilities for Timing Mode
- Initial feasibility studies for CESR are underway (Suntao Wang)

2nd stable orbit with Transverse Resonance Island Buckets - TRIBs

2020.06.09

10th IPAC 2019, Melbourne, Australia

Summary

Present Status:

- 100mA operations for CHESS
- Fast Corrections (10 seconds, vs. 5 minutes) implemented
- First demonstrations of Timing Mode bunch patterns

• Coming Soon:

- 200mA operations
- Installation of spare dipole and RF power supplies
- Improved corrections program
- Timing Mode demonstrations