Pressure? What a strange idea! Why would I do that?

Protein folding and conformational landscapes

The molar volume of proteins

$$\Delta V_{F-U} = \Delta V_{vF-U} + n_s (V_{sb} - V_{sp})$$

Solvent excluded voids in the folded state

Depends on packing efficiency

Non-uniformly distributed

n, solvent molecules move from the bulk to interact with U

Any changes in solvent density between the bulk and the protein would lead to a change in volume

Electrostriction of charges provides a negative contribution to the value of ΔV (un)folding

But only for buried charged or ionisable groups, of which there are few

Average difference = - 24 +/- 6 ml/mol

ΔV (un)folding correlates strongly internal cavities

T4 lysozyme

variants

Ando et al. Biochemistrv 2008

High Pressure NMR on a repeat protein reveals deviation from 2-state unfolding

Folding landscape from structure-based simulations constrained by the NMR data

Configurations are clustered and rebuilt to an all atom model

Explore how mutations affect conformational landscapes

P-jump kinetics to probe effects of mutations on folding rates and routes

Roche et al, JACS 2013

Pressure disrupts domain and subunit interactions

Silva, Foguel & Royer TiBS, 2001

Pressure perturbs RNA structures too

RNA folding intermediates

Lipid phases are strongly dependent on pressure

So et al 1993, Phys. Rev. Lett

Pressure perturbs protein LLPS transitions in unexpected ways

Cinar, ...Chan, Winter Chemistry: A Eur. J., 2019

Pressure disrupts the ParA/B condenstates of E. coli in vivo

A ParB-HU at 0.1 MPa

B ParB-HU at 100 MPa

C ParB-HU back 0.1 MPa

>80% of the microbial biomass on Earth lives at high pressure

What are the sequence determinants of biomolecular function in the deep biosphere?

Extreme Biophysics Research Coordination Network: Exploring the molecular limits of life

SAXS