

Sample Preparation for SAXS

Considerations prior to and during beamtime

Max Watkins – Ando Lab @ Cornell – CHESS HP Bio Workshop 2021 – April 29 2021

Ni-NTA, no SEC

Cobalt + SEC

Consequences of heterogeneous samples

For a homogenous sample, scattering in solution appears as a rotational average of a single protein

$$I(q) \propto N \left\langle \left| F[\rho(\vec{r})] \right|^2 \right\rangle_{\Omega}$$

Randomly oriented, homogenous particles

For a mixture of M species, the scattering can be represented as a linear combination of the scattering from each component

Types of heterogeneity

- Different types of heterogeneity have different effects on the data
 - Contaminant proteins
 - Aggregates
 - Oligomeric heterogeneity
 - Conformational heterogeneity
- Aggregates/oligomers can sometimes be separated by SEC-SAXS or AEX-SAXS
- However, math cannot solve all problems
 - Cleaner samples (less species) will be easier to deconvolute
 - Buffer mismatch can complicate analysis
- Conformational heterogeneity can be difficult to parse

- Mixtures of species can sometimes be separated mathematically
 - Singular value decomposition (SVD)¹
 - Evolving factor analysis (EFA)¹
 - Regularized alternating least squares (REGALS)²
- Aggregates can be a major issue
 - I(q) ∝ MW² small amounts of aggregate can dominate signal
 - Centrifuging samples (5-10 mins @ 10,000 x g) immediately prior can help

EFA separation of Bio-rad chromatography standards

- 1. Meisberger et. al., JACS 2016
- 2. Meisberger, Xu and Ando, IUCrJ 2021

Types of heterogeneity: contaminants

Large MW contaminants have a much greater effect than small ones ($I(q) \propto MW^2$)

• Aggregates and large contaminant proteins have a major effect

Jeffries et. al., Nature Protocols 2015

Types of heterogeneity: conformational heterogeneity

Conformational heterogeneity can be more difficult to parse

- Differences in scattering profiles may be much more subtle
- Harder to separate by chromatography

Jeffries et. al., Nature Protocols 2015

Sample preparation: pre-beamtime

- Protein purification requirements for SAXS are more stringent than for many other techniques
 - Anion-exchange/Size-exclusion cleanup steps are almost always necessary
 - Be sure to choose a high enough resolution column (Superdex 200 increase, Mono-Q/S HR, etc.) to separate species well

Separation of BSA on different SEC columns, from Jeffries et. al., Nature Protocols 2015

- Know your protein concentration as accurately as possible
 - Extinction coefficient (usually A_{280}) is often accurate to ~10%
 - Other methods (i.e. Bradford assay) may be necessary for proteins with absorbing cofactors or that lack aromatic residues
- Know behavior of protein upon freeze-thaw cycles
 - Does it precipitate out of solution?
 - Does it significantly increase aggregates?
- Preparing a 10x buffer stock for on-site sample-prep and buffer exchange is often helpful
- Prepare additive stocks in experimental buffer

- One experimental condition = one sample
- Generally, each condition of interest will require at least one prepared aliquot and matching buffer
 - >20 µL protein at desired experimental concentration (at least 1 mg/mL, higher for small proteins)
 - More for HP-SAXS
 - Plan on having duplicates of each condition
 - Good idea to prepare small aliquots at higher concentrations to dilute and prepare at the beamline
 - More details on this later

Basic sample analysis: pre-beamtime

- A priori knowledge: the more, the better!
 - Purity (gel filtration, analytical chromatography),
 - Activity/foldedness, available structural information
- Standard SDS-PAGE cannot distinguish oligomers or aggregates, only contaminant proteins
 - Native PAGE gels or analytical chromatography (SEC or AEX) prior to beamtime

Advanced sample analysis: pre-beamtime

- Other, more advanced techniques can be helpful in predicting behavior at the beamline
 - Analytical Ultracentrifugation (AUC)
 - Dynamic light scattering (DLS) or Multi-angle light scattering (MALS)
 - SEC-MALS sometimes available as in-line validation for SEC-SAXS

Transporting samples: checklist

- Crucial to know how well your protein handles freeze-thaw cycles
- If you can, store aliquots at -80°C and transport frozen (on dry ice)
 - Avoid introduction of air bubbles and centrifuge samples prior to freezing
 - Give samples enough time for CO2 from transport to diffuse
 - Thaw slowly (on ice) as needed at the beamline
 - If your protein is not frozen, transport on ice
 - Arrange for dry ice for return trip
- Additional things to transport:
 - Concentrated buffer solutions
 - Concentrated stock solutions of additives (reductants, substrates), preferably in experimental buffer
 - Equipment for buffer exchange (i.e. micro-spin columns)

Benefits of CHESS in the winter

Ideally, scattering can be described as:

I(q) = F(q) x S(q)

where F(q) is the form factor and S(q) is the structure factor (S(0) = 1 under the dilute limit)

- Increasing concentration leads to increased probability of particle interaction
- *S*(0) will deviate from unity
 - Aggregation (S(0) > 1)
 - Interparticle repulsion (S(0) < 1)

Minimal interparticle effects

 $S(0) \approx 1$

Aggregation

S(0) > 1

Repulsion

S(0) < 1

Examining concentration effects: concentration series

Skou et al., Nature Protocols (2014)

17

Planning a concentration series experiment

Diagnosing concentration effects

Guinier plots are particularly sensitive to concentration effects, since they manifest largely in the low-q region

Importance of good buffer subtraction

- Exact buffer match is crucial to good-quality SAXS data
 - Scattering intensity is sensitive to small differences in salt/buffer/additive concentrations
- On-site buffer exchange (gel filtration, micro-spin columns) is best practice
 - In-line SEC (SEC-SAXS) should also give you a correct buffer match

Viewing data as a Kratky transformation $(I(q)^2 vs q)$ can be helpful in diagnosing mismatches

Exact buffer match Buffer + glycerol (undersubtracted) Completely different buffer (oversubtracted)

Skou et al., Nature Protocols (2014)

- Ligand/substrate titrations are common practice for verifying conformational changes
- Any changes in solution composition (i.e. addition of ligands) can significantly alter the scattering profile

- You need an exact buffer match for each condition in a titration
 - Careful pipetting is key!
 - Good to prepare matched buffer simultaneously with protein sample
- With good buffer subtraction, small conformational changes can be visualized!

Titration of dATP into ribonucleotide reductase

Ando et. al., Biochemistry 2015

Pipetting Tips: Increasing accuracy

- Maintain vertical angle when aspirating
- Touch tip to side of tube when dispensing
- Proper immersion depth

Proper immersion depth

Improper immersion depth

https://www.mt.com/de/en/home/library/videos/rainin-pipettes/pipette_tip_immersion.html

Buffer considerations: Effects of T and P

- For weak acids and bases, the dissociation constant is dependent on temperature and pressure
- This can be described by the Planck equation:

$$\left(\frac{\delta \ln K_a}{\delta P}\right)_T = -\frac{\Delta V^{\rm o}}{RT}$$

• **P** is pressure, **T** is temperature, K_a is the dissociation constant and ΔV° is the reaction volume (difference in partial molar volumes of the acid and ionized molecules)

- Generally, pH decreases with temperature
 - Increased propensity for ionization
- The effect of temperature varies considerably depending on the buffer
 - Tris is known to be especially poor
 - Amine buffers generally less Tdependent
 - Many purifications are done at 4°C, which may not be ideal for SAXS experiments that probe biological activity

Temperature Dependence of pH for Commonly Used Buffers.

Buffer System	pK,/20°C	∆pK _a /10°C
MES	6.15	-0.110
ADA	6.60	-0.110
PIPES	6.80	-0.085
ACES	6.90	-0.200
BES	7.15	-0.160
MOPS	7.20	-0.013
TES	7.50	-0.200
HEPES	7.55	-0.140
Tricine	8.15	-0.210
Tris	8.30	-0.310
Bicine	8.35	-0.180
Glycylglycine	8.40	-0.280

Reference

Good, N.E. (1986) Biochemistry 5, 467.

Goldberg, RN et al. J. Phys. Chm. Ref. Data. (2002)

- Water molecules pack more closely around free ions, resulting in a net reduction of system volume
- Generally, pressure favors ionization of weak acids
- Anionic buffers (phosphate, DMG) are more sensitive than cationic/zwitterionic buffers (HEPES, MES, Tris)

Buffer	pK _a d (25°C)	ΔV°
Pyrophosphate (3 rd)	6.70	-20.7
HEPES (2 nd)	7.50	4.8
MES	6.10	3.9
Bis-tris	6.50	3.1
MOPS	7.15	4.7
Tris	8.10	4.3
Bicine	8.30	-0.2
DMG (2 nd)	6.35	-25.0
Bis-tris propane	6.75	10.5

Kitamura, Y. and Itoh, T. Journal of Solution Chemistry (1987)

- Continued exposure to X-rays will degrade sample quality
- X-rays interact with water and generate free radicals (particularly HO⁻)
 - Can then cause specific structural disruption in individual residues
- Most commonly manifests as aggregation in SAXS
 - Radiation tolerance generally much lower than cryo-MX (~1000x)
- In most cases damage is a strict function of dose

Hopkins and Thorne, J. Appl. Cryst. 2016

- Radiation damage varies widely by sample
- Radiation sensitivity can be quantified
- In practice, usually sufficient to plot R_g or P(r) D_{max} as a function of dose (i.e. R_g vs. frame number)
 - Cut off exposures where R_g starts to increase considerably or Guinier behavior becomes poor

SAXS data parameters vs. dose for lysozyme (4.1 mg/mL) Hopkins and Thorne, J. Appl. Cryst. 2016 210 ms

- Optimization of buffer conditions (salt, pH)
- Decrease exposure or flux
- Many additives are effective at mitigating radiation damage
 - Reductants (DTT, TCEP)
 - Other small molecules often help (glycerol, sucrose, ascorbate)
 - Be careful, may decrease contrast at high concentrations (>10%)

Jeffries et. al., Journal of Synchrotron Radiation 2015

Checklist for characterization of a new sample

- 1. Run a concentration series, if sample is new to SAXS
 - Minimum 3 points
 - Check for concentration effects
- 2. Vary buffer salt concentration and assess radiation damage, if needed
- 3. Experiment with various additives (DTT, glycerol, etc.) to mitigate radiation damage
- 4. It is a good idea to characterize a sample with ambientpressure SAXS prior to a high-pressure experiment, as pressure effects are often subtle.

Sample amount considerations: Regular BioSAXS

- There are no absolute rules for sample concentrations or amounts
 - Every protein behaves differently*check website
- Some general considerations:
 - Scattering intensity is $\propto MW^2$, so small proteins may require considerably higher concentrations or more exposures
 - Studying proteins at or near physiological concentrations is ideal, if possible
- For most proteins, absolute minimum consumption per measurement ~20 $\mu{\rm L}$ at 1 mg/mL for standard flow cell
 - Plan on having more per sample
 - Running duplicates is common (expect to use ~50 μ L sample per measurement)
- Need 5-10x more for SEC-SAXS experiments
- Higher concentrations may be necessary for small (< 50 Kda) proteins
- <u>https://www.chess.cornell.edu/macchess/biosaxs/visit</u>

- At CHESS, batch mode samples (60 $\mu \rm L$ each) are loaded into a diamond-windowed cell
 - Again, expect to use duplicates for each condition
- Sample-to-buffer contrast decreases significantly with pressure
 - May need 2-3 times higher concentration than for regular BioSAXS
 - Recommended rule of thumb: minimum concentration = 150/MW (kDa)
- In batch mode, radiation damage can be significant (static sample)
 - Less of an issue for HP SEC-SAXS
- Pressure series (constant T) are much less time-consuming than temperature series (constant P)

- 1. Plan experiments carefully (pre-plan recipes for experimental solutions) and have an order of priority
- 2. Thaw protein on ice, slowly, as needed. Do not vortex or shake!
- 3. Dilute buffer stock and add fresh reductant to the buffer solution, if needed
- 4. Buffer exchange on-site into freshly prepared buffer
- 5. Prepare experimental solution (and matching buffer) carefully: avoid introducing air bubbles, use proper pipetting techniques
- 6. Incubate with ligand/substrate at desired experimental temperature
- 7. Centrifuge samples (5-10 minutes @ 10,000 x g, refrigerated centrifuge)
- 8. Load sample! Avoid air bubbles

- Jeffries, CM et al. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments. Nature Protocols (2016)
- Skou, S. Gillilan, R and Ando, N. Synchrotron-based small-angle X-ray scattering (SAXS) or proteins in solution. Nature Protocols (2014)
- Goldberg, RN et al. Thermodynamic Quantities for the Ionization Reactions of Buffers, J. Phys. Chm. Ref. Data. (2002)
- Kitamura, Y. and Itoh, T. Reaction Volume of Protonic Ionization for Buffering Agents. Prediction of Pressure Dependence of pH and pOH. Journal of Solution Chemistry (1987)
- Jeffries, CM *et al.* Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII. Journal of Synchrotron Radiation (2015)
- Hopkins, JB and Thorne, RE. Quantifying Radiation Damage in Biomolecular Small-angle X-ray scattering. J Appl Crystallogr (2016)