

Ultra-Wide Dynamic Range Commercial PAD

B.W. Martin a, V. E. Fleischauer a, B. Chan a, H.T. Philipp b, M.W. Tate b, K.S. Shanks b, S.M. Gruner b, c, d

FOCUSING ON THE FUTURE

^a Sydor Technologies, Fairport, NY 14450, USA, ^b Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, U.S.A., ^c Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, U.S.A., ^d Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, U.S.A.

SYDOR TECHNOLOGIES

COMPLEX MEASUREMENTS—CRITICAL RESULTS

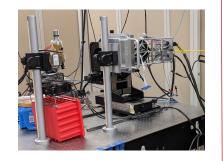
Support from the U.S. government's SBIR/STTR program allowed Sydor Technologies to bring two Cornell University integrating detectors to the light source community:

MM-PAD is ideally suited for fast SAXS, CDI, and ptychography experiments

where the ability to measure high and low flux signals in the same image is

1. Keck-PAD (single-bunch imaging) 2. MM-PAD (wide dynamic range)

essential.


PRESENT

Specs

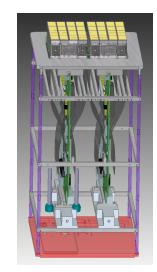
- Dynamic range beyond that achievable with traditional integrating detectors
 - < 10⁷ photons/pixel
- Single photon resolution
- Up to 1,100 frames per second
- 4-side tileable modular design
 - 512 x 512 pixel array
 - ~ 80 x 80 mm active area

Testing

- Sydor x-ray test facility
- Geometric calibrations
- Imaging
- APS beamline testing

FUTURE (Current Developments)

Single Module Units


• Small, integrated solution, 128 x 256 pixels

Mega-PAD

- Increased active area
 - 1024 x 1024 pixels, ~ 160 x 160 mm

Testing

- Beyond proof of concept
- Research application demonstrations

USERS' MEETING 2020