

SAXS Fundamentals

Basic SAXS theory, experiments, and data interpretation

Will Thomas – Ando Lab @ Cornell – CHESS HP Bio Workshop 2021 – April 29 2021

Will Thomas @ Ando Lab— CHESS HP Bio Workshop 2021

X-ray scattering of proteins

X-ray scattering of proteins

Examples of sample cells:

- Static cell
- Oscillating "flow" cell
- Continuous flow
- Co-flow
- Chromatography-coupled continuous flow
- High-pressure cell

- foldedness, packing, flexibility
- overall shape
- stoichiometry and shape of complexes
- conformational changes as functions of time, ligands, solution conditions

SAXS signal is the interference of scattering from all electrons

Momentum transfer vector: $q = (4\pi/\lambda)\sin\theta$

incident X-ray

- The sum of the scattering from all electrons in a protein is mathematically equivalent to the Fourier Transform of its electron density, $\rho(r)$. In other words, scattering is directly related to **protein structure**.
- Amplitude of the scattered wave:

Fourier Transform!

Amplitude = $\int \rho(r)e^{iq\cdot r}dV$

Scattering of proteins in solution

Scattering from *N* identical proteins under dilute conditions:

Scattering intensity
$$\longrightarrow I(q) \propto N < |Amplitude_{particle}|^2 >_{\Omega}$$

Therefore: SAXS gives info about rotational average of single protein **for a homogeneous sample**

Integrate and normalize based on beamstop diode readings

$$I_{protein} = I_{solution} - I_{buffer}$$

Important:

Buffer must be matched **EXACTLY**, and the profiles must be accurately normalized for changes in X-ray intensity.

Buffer scatters some and absorbs X-rays. Affects contrast and needs to be subtracted!

Contrast is small: $\rho_{water} = 0.334$ electrons/Å³ and $\rho_{protein} \sim 0.44$ electrons/Å³ **At standard temperature and pressure!**

- Exactly matched buffers
- Perform buffer exchange with size exclusion chromatography (SEC) or dialysis and save excess exact buffer
- Perform SEC-SAXS at beamline
- Protein quality
- Optimize sample purity, stability, and conformational heterogeneity beforehand if possible
- (e.g. SDS-PAGE, chromatography, dynamic light scattering, multiangle light scattering)

Be careful of *x***-axis definitions and units!**

- In SAXS, this variable is sometimes called momentum transfer or scattering vector. Can have units of Å⁻¹ (biological) or sometimes nm⁻¹ (materials).
- Usually...
- $q = (4\pi/\lambda) \sin\theta$
- $s = (2/\lambda)sin\theta$

Always check that units in analysis programs match your input! Always define in methods!

Integrate and normalize based on beamstop diode readings

Approaches zero

$$I_{protein} = I_{solution} - I_{buffer}$$

$I(q) \approx S(q)F(q)$

- *F*(*q*) = form factor (scattering from single protein, rotationally averaged)
- S(q) = structure factor. Describes interparticle interactions [Note: this is not the same as "structure factor" in crystallography]
- Ideally and in dilute solutions, $S(q) \approx 1$

Sample characteristic	Parameter to study
Purity/monodispersity	Guinier plot
Oligomeric state	Volume and molecular weight
Shape/anisometry	Envelope, <i>R_g</i> , <i>P</i> (<i>r</i>)
Flexibility (folded/non-folded)	Kratky plot, Porod exponent
Interparticle interactions	Guinier, Concentration series
Conformation	Overall scattering profile

Different ways to inspect data by eye

Can be used to estimate R_g and I(0), which tell us about protein shape and size

I(0): forward scattering R_g : Radius of gyration

Useful definitions of R_g :

Radius of gyration is the root mean square distance of a particle from the center of its electron density

 R_g – radius of gyration R_M – radius of mass-equivalent sphere R_H – hydrodynamic radius (not always > R_g) R_R – maximum hard sphere radius

Experimental lysozyme parameters

MW = 14.4 kDa $R_R = 23 \text{ Å}$ $R_g = 15 \text{ Å}$

 R_g (pressure unfolded) = 32 Å

Guinier analysis continued

Can be used to estimate R_g and I(0), which tell us about protein shape and size

I(0): forward scattering R_g : Radius of gyration

Guinier approximation at small angles $(qR_g < 1.3)$:

$$I(q) = I(0)e^{-R_g^2 q^2/3}$$

$$\ln[I(q)] = \ln[I(0)] - \frac{R_g^2}{3}q^2$$

y = mx + b

Guinier approximation at small angles $(qR_q < 1.3)$:

$$I(q) = I(0)e^{-R_g^2 q^2/3}$$

$$\ln[I(q)] = \ln[I(0)] - \frac{R_g^2}{3}q^2$$

Your Guinier plot should be **linear**. Upturns or downturns may reflect aggregation and/or interparticle effects!

Guinier approximation at small angles $(qR_g < 1.3)$:

$$I(q) = I(0)e^{-R_g^2 q^2/3}$$

$$\ln[I(q)] = \ln[I(0)] - \frac{R_g^2}{3}q^2$$

Aggregation leads to an upturn at low-q.
Radiation damage often causes aggregation.

I(0) depends on contrast, molecular weight, concentration

 $I(0) \propto c_{molar} (\Delta \rho \cdot V_p)^2 \propto c_{molar} M^2 \propto c_{mass} M$

- *M* = molecular weight (kDa)
- V_{ρ} = particle volume (Å³)
- c_{molar} = molar concentration (µM)
- c_{mass} = concentration in mg/ml
- $\Delta \rho = \rho_{\rho} \rho_{s} =$ electron density contrast between the hydrated particle (ρ_{ρ}) and solvent (ρ_{s}) (e⁻/Å³)

I(0) is related to a protein's molecular weight.

https://www.genengnews.com/magazine/295/new-peaks-inhydrophobic-bioprocessing/

Stuhrmann, H. B. (1980). Synchrotron Radiation Research, edited by H. Winick, Doniach, S., pp. 513-531. New York: Plenum Press.

Relationship between MW, concentration, and I(0)

I(0) is proportional to MW². $I(0) \propto c_{molar} M^2 \propto c_{mass} M$

monomer-dimer transition

- At the same molar concentration, a sample of dimers has an *I*(0) that is 4x that of a sample of monomers.
- However, in a monomer-dimer transition, the molar concentration is halved due to dimerization, so the net change in I(0) is a factor of $4 \times 1/2 = 2$.

Kratky plots are sensitive to conformation

- Replot as Iq^2 vs q
- Emphasizes the power-law dependence in mid-q region (~q -n) that contains information about foldedness, compactness, flexibility.

At high angles, I(q) decays with a power-law dependence, q^n .

folded, compact: $n \sim -4 \implies$ peak random polymer chain: $n \sim -2 \implies$ plateau extended polymer chain: $n \sim -1 \implies$ rise

Kratky plots are sensitive to background subtractions

- properly matched buffer
- similar buffer with glycerol added
- different buffer

The Porod volume is the ratio of *I*(0) and the area under the Kratky plot (Q_p). For compact particles, it gives an estimate of the volume of the macromolecule in solution.

$$Q_p = \int_0^\infty q^2 I(q) dq \qquad \qquad V_p = \frac{2\pi^2 I(0)}{Q_p}$$

where Q_p is the Porod invariant (area under the plot) V_p is the Porod volume

Can be estimated in RAW or Atsas

MW estimation

Can be estimated from SAXS data in multiple ways:

- From Porod Volume
- From absolute scaled *I*(0)
- From a reference standard
- From volume of correlation

 Important: As a rule of thumb, assume at least ~10% uncertainty. Better to combine with other techniques or use for things like checking oligomeric state.

- Can be calculated from a SAXS profile using a Porod invariant approach implemented in RAW.
- Porod volume (in $Å^3$) is ~1.6-1.7x the MW (in Da).
- Pros: Fairly accurate and does not need standard, concentration, or absolute calibration.
- Cons: Sensitive to subtraction errors, does not work for non-protein or extended structures.

Piiadov, V., de Araújo, E. A., Oliveira Neto, M., Craievich, A. F. & Polikarpov, I. (2018). Protein Sci. 2–22. DOI: 10.1002/pro.3528

- Scattering at I(0) is proportional to MW of the macromolecule. If a reference sample is known, it can be used to calibrate.
- Pros: Can be accurate if standard and sample are similar and conditions are similar
- **Cons**: Requires accurate concentration, similar standard and standard conditions (e.g. same buffer).

Svergun & Koch (2003). Reports on Progress in Physics, 66, 1735–1782.

Pair-distance distribution function

- *P*(*r*) is the inverse Fourier Transform of *I*(*q*) and represents the histogram of electron-pair distances in a protein.
- When D_{max} is well-defined, provides R_g , I(0), shape information

 $\frac{\int_{0}^{D \max} r^{2} P(r) dr}{2 \int_{0}^{D \max} P(r) dr}$ $R_g^2 =$

Svergun & Koch (2003). Reports on Progress in Physics, 66, 1735–1782.

Will Thomas @ Ando Lab— CHESS HP Bio Workshop 2021

In RAW:

- Bayesian Indirect Fourier Transform (BIFT)
- GNOM from ATSAS package (if ATSAS is installed)

Important: Methods require iterative adjustment of a few parameters: D_{max} and α (a fit weighting parameter).

P(r) determination

Criteria:

- 1. The *P*(*r*) function smoothly fits the measured scattering profile.
- 2. The P(r) function goes to zero at r=0 and $r=D_{max}$

Additional usual criteria:

- 1. The R_g and I(0) from the Guinier fit and the P(r) function agree well.
- 2. The *P*(*r*) function is always positive.

Svergun & Koch (2003). Reports on Progress in Physics, 66, 1735–1782.

Fitting data to theoretical scattering

10² • CRYSOL from ATSAS package (Svergun group, EMBL) • FoXS server (Sali group, UCSF) 10[°] /(d) SAXS data More on this with Steve GNOM **10**⁻² **DAMMIF** fit **CRYSOL** fit 0.1 0.15 0.2 0.25 0.05 0.3 0 q (Å-1)

- Following *P*(*r*) analysis, a low-resolution 3D model can be reconstructed from SAXS data.
- Options in ATSAS package
- More on this later, use carefully!

Sample characteristic	Parameter to study
Purity/monodispersity	Guinier plot
Oligomeric state	Volume and molecular weight
Shape/anisometry	Envelope, <i>R_g</i> , <i>P</i> (<i>r</i>)
Flexibility (folded/non-folded)	Kratky plot, Porod exponent
Interparticle interactions	Guinier, Concentration series
Conformation	Overall scattering profile

