Nozzle flow measurements during composite 3D printing B.P. Croom, A. Abbott, H. Koerner

B.P. Croom, A. Abbott, H. Koerner Air Force Research Laboratory, WPAFB, OH, USA

FOCUSING ON THE FUTURE

Overview

CHESS

Direct Ink Writing allows printing of high-performance composites with aligned fibers.

• How does processing affect fiber alignment?

Velocity gradients determine fiber alignment kinetics

Flow streamlines:

Flow induced alignment:

Quantitative, full-field analysis of nozzle flow

Key findings

PIV reveals that flow structure depends on flow rate (strain rate). Transition at ~1 mm/s

Conclusions

35

30

25 (p

20

- ✓ Flow transitions from "plug flow" to "pseudo-Newtonian" regime at increasing velocity
- ✓ Pseudo-Newtonian flow improves fiber alignment kinetics

Composite 3D printing via Direct Ink Writing (DIW)

Goal: Understand nozzle flow conditions and fiber alignment kinetics

- How does processing affect fiber alignment?
- Can we control or improve the fiber alignment?

Compton, Adv Materials 2014

USERS' MEETING 2020

In situ study of ink extrusion

Methods:

CHESS

- Phase contrast imaging to study ink flow
- Particle Image Velocimetry to quantify local velocity

Particle Image Velocimetry results

Results:

- Full-field velocity measurements
 - Different nozzle positions
 (nozzle diameter)
 - Different print pressures (fluid velocity)

USERS' MEETING 2020

Particle Image Velocimetry results

Results:

CHESS

- Full-field velocity measurements
 - Different nozzle positions
 (nozzle diameter)
 - Different print pressures (fluid velocity)

USERS' MEETING 2020

Conclusions

Phase contrast imaging can access ink flow and fiber alignment kinetics *within the nozzle*

CHESS

Flow transitions from "plug flow" to "pseudo-Newtonian" regime at increasing velocity

Pseudo-Newtonian flow improves fiber alignment kinetics

Flow streamlines:

Flow induced alignment:

