Skip to main content
Home
Home
  • Status
  • Science
    • Art and Archaeology
    • Biology
    • Chemistry
    • Energy
    • Engineering
    • Materials
    • X-Ray Technology
    • User Stories
    • Science Highlights
    • Publications
  • Users
    • What's the process? - Prospective User Guide
    • User Guide
    • Beamline Directory
    • CHESS Deadlines
    • X-Ray Run Schedule
    • Shipping
    • Safety
      • In-Person User Orientation and Safety Training
    • Travel and Lodging
    • Acknowledgments
    • User Agreement
    • CHESS Status Page
    • Technical Resources
      • Affiliated Resources
      • Calculators
      • Computing
      • Detectors
      • Video Backgrounds
  • Facilities
    • Becoming a Partner
    • CHEXS
    • HMF Beamline
    • MSN-C
    • MacCHESS
      • Crystallography
      • BioSAXS at MacCHESS
      • People
      • Publications
      • S7 chemistry lab
    • XLEAP
      • People of XLEAP
      • XLEAP Overview
      • Proposed Capabilities
      • Stay in touch
  • Public
    • Events
    • Tours
    • Student Opportunities
    • Lending Library
    • 3D and Virtual Tours
  • Industry
  • About
    • Staff Directory
    • Advisory Bodies
    • What we do
    • Job Openings
    • News
      • CHESS eNewsletter
      • Media Resources
      • News Archive
    • Beyond the Lab
    • History

Where did those electrons go? Decades-old mystery solved

Valence controls crucial properties of molecules and materials, including their bonding, crystal structure, and electronic and magnetic properties.

Four decades ago, a class of materials called “mixed valence” compounds was discovered. Many of these compounds contain elements near the bottom of the periodic table, so-called “rare-earth” elements, whose valence was discovered to vary with changes in temperature in some cases. Materials comprising these elements can display unusual properties, such as exotic superconductivity and unusual magnetism.

Tags
chemistry
science
  • Read more about Where did those electrons go? Decades-old mystery solved

Facilities

  • Read more about Facilities

Science

  • Read more about Science

Changing the identity of cellular enzyme spawns new pathway

Integral membrane proteins, or IMPs, are a major class of proteins that play crucial roles in many cellular processes, including the catalysis of disulfide bonds, which are essential for the function and stability of many proteins such as antibodies, which have significant therapeutic potential.

But IMPs are intrinsically hydrophobic and thus have low solubility in watery environments. Their natural environment is within the lipid bilayer membrane of a cell, which makes it difficult to study their structure and function.

Tags
macchess
science
biology
  • Read more about Changing the identity of cellular enzyme spawns new pathway

Pagination

  • Previous page ‹‹
  • Page 2
Subscribe to science

Footer menu

  • Newsletter
  • CLASSE
  • Contact
  • Staff
  • Feedback
  • Web Accessibility Help
The Cornell High Energy Synchrotron Source (CHESS) is operated and managed by Cornell University.
CHESS/Wilson Lab 161 Synchrotron Drive Ithaca, NY 14853
© 2025 Cornell High Energy Synchrotron Source