Skip to main content
Home
Home
  • Status
  • Science
    • Conservation Science EASL
    • Biology
    • Chemistry
    • Energy
    • Engineering
    • Materials
    • X-Ray Technology
    • User Stories
    • Science Highlights
    • Publications
  • Users
    • What's the process? - Prospective User Guide
    • User Guide
    • Beamline Directory
    • CHESS Deadlines
    • X-Ray Run Schedule
    • Shipping
    • Safety
      • In-Person User Orientation and Safety Training
    • Travel and Lodging
    • Acknowledgments
    • User Agreement
    • CHESS Status Page
    • Technical Resources
      • Affiliated Resources
      • Calculators
      • Computing
      • Detectors
      • Video Backgrounds
  • Facilities
    • Becoming a Partner
    • CHEXS
    • HMF Beamline
    • MSN-C
    • MacCHESS
      • Crystallography
      • BioSAXS at MacCHESS
      • People
      • Publications
      • S7 chemistry lab
    • XLEAP
      • People of XLEAP
      • XLEAP Overview
      • Proposed Capabilities
      • Stay in touch
  • Public
    • Events
    • Tours
    • Student Opportunities
    • Lending Library
    • 3D and Virtual Tours
  • Industry
  • About
    • Staff Directory
    • Advisory Bodies
    • What we do
    • Job Openings
    • News
      • CHESS eNewsletter
      • Media Resources
      • News Archive
    • Beyond the Lab
    • History

A History of Science: Cornell High Energy Synchrotron Source

CHESS is a circular particle accelerator that produces synchrotron radiation in the form of high-intensity, high-energy x-rays. These x-ray beams are instrumental for research in a wide variety of fields, including materials science, biology, and physics. The CHESS facility is connected with the Cornell Electron Storage Ring, which stores the beams of light accelerated by the synchrotron.

  • Read more about A History of Science: Cornell High Energy Synchrotron Source

Nanoparticles show unusual fusion

Ostwald ripening is a familiar effect – think of small water droplet condensing on a cold window pane. Sooner or later larger droplets form that will grow at the expanse of the smaller ones. Now imagine this random process proceeding in a highly organized way and with formation of symmetric patterns – such a behavior would seem rather unusual.

  • Read more about Nanoparticles show unusual fusion

Creating real-world conditions in the laboratory for studying material behavior

This type of repetitive use, or cyclic loading, leads to failure of everything from auto components to door hinges to plastic utensils. In the engineering world, understanding failure and predicting failure of parts and materials is important, yet a complete understanding of the processes which lead to failure remains incomplete. In addition to worrying about failure, engineers are also concerned with system efficiency. Many systems, such as automobile engines, run more efficiently at higher operating temperatures. Improving efficiency has enormous technical and economical relevance.

  • Read more about Creating real-world conditions in the laboratory for studying material behavior

Nobel laureate talks life expectancy, antibiotics

Yonath linked widespread use of antibiotics to increased human life expectancy. Her work on ribosomes has offered insight into helping researchers understand antibiotic resistance.

Yonath won the Nobel Prize for Chemistry in 2009 for her work determining the structure of ribosomes using cryo-crystallography, which freezes cellular components so they can be viewed with X-rays. Yonath and her research team developed the technique in conjunction with the Cornell High Energy Synchrotron Source (CHESS), a powerful synchrotron X-ray facility.

  • Read more about Nobel laureate talks life expectancy, antibiotics

Guinness World Record for micro view into hidden worlds

Their technique was shown to measure down to 0.39 ångströms or 0.039 nanometers (one-billionth of a meter).

Guinness World Records has officially recognized the Cornell collaboration’s achievement, listing it alongside such notables as Robert Pershing Wadlow (at 8 feet, 11.1 inches, the world’s tallest human) and Lee Redmond (longest fingernails, with a combined length of 28 feet, 4 inches).

  • Read more about Guinness World Record for micro view into hidden worlds

Catherine Royer named President-elect, Biophysical Society

  • Read more about Catherine Royer named President-elect, Biophysical Society

Luisa Whittaker-Brooks Named Talented Twelve

  • Read more about Luisa Whittaker-Brooks Named Talented Twelve

Hollow metal oxide nanoparticles produced from hot air

Cobalt oxide nanomaterials, in particular Co3O4 nanoparticles, are promising candidates for use in batteries, supercapacitors, and as electrocatalysts. The Robinson Group, in the Materials Science and Engineering department at Cornell University, has discovered important insights into methods to produce Co3O4 nanoparticles in a simple air oxidation process [1]. The nanoparticles have a high ratio of {110} surface planes making them ideal for use as catalysts.

  • Read more about Hollow metal oxide nanoparticles produced from hot air

GISAXS/GIWAXS furnace ready for action

The furnace is based on a design originally brought to G1 by John Hart’s group (MIT, then at University of Michigan) to study fabrication and kinetic effects in carbon nano-tube forests. The furnace uses highly doped, single-crystal silicon as the sample stage and heater. The temperature response is fast (~100C/second), accurate, and results in relatively little sample motion from thermal expansion. The furnace can be operated in air or under gas flow, and exchanging samples is straightforward and fast.

  • Read more about GISAXS/GIWAXS furnace ready for action

New air-free glovebox facility

The new glovebox provides users with an air and moisture free environment to store and prepare air sensitive samples for measurement at CHESS. Currently the glovebox provides a dry nitrogen environment; however, future upgrades will allow users to select nitrogen, argon, or helium environments dependent upon experimental needs. During the fall x-ray running period the glovebox was installed and commissioned MBraun and tested by two local Cornell experimental groups.

  • Read more about New air-free glovebox facility

Pagination

  • First page « First
  • Previous page ‹ Previous
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next ›
  • Last page Last »
Subscribe to

Footer menu

  • Newsletter
  • CLASSE
  • Contact
  • Staff
  • Feedback
  • Web Accessibility Help
The Cornell High Energy Synchrotron Source (CHESS) is operated and managed by Cornell University.
CHESS/Wilson Lab 161 Synchrotron Drive Ithaca, NY 14853
© 2025 Cornell High Energy Synchrotron Source