CHESS facility helps scale up solar cells

Visiting scientists from the University of Virginia have used the facilities of the Cornell High Energy Synchrotron Source (CHESS) to observe their chemistry in action. By firing high-intensity X-rays into a sample in a process known as X-ray crystallography, CHESS scientists took a series of snapshots of a material as it crystallized, showing how changes in the formula affect the process of crystal growth.

X-rays record structural changes inside lithium batteries

Quinones, in general, and anthraquinones, in particular, are especially attractive due to their ability to reversibly exchange multiple electrons per formula unit. When used as the active electrode material in a real lithium-ion battery (LIB), crystalline anthraquinone (in powder form) reversibly changes crystal packing as a function of state-of-charge (redox state), with a well-defined voltage plateau appearing concomitantly with new structural phases.


Materials scientist Jin Suntivich to study fuel cells differently

Transition-metal oxides are a class of high-performance catalysts with great potential, but the way in which they govern electrochemical reactions that turn fuel into energy remains poorly understood. Jin Suntivich, assistant professor of materials science and engineering, hopes to change that by studying catalysts in a new way, and he has been awarded $750,000 by the U.S. Department of Energy’s 2017 Early Career Research Program.



Batteries store energy via chemical reactions for later use in electronics, transportation, and grid load leveling. Most commercial rechargeable batteries are based on mechanisms fairly well understood. To move forward in the development of better energy materials, new materials need to be developed to increase efficiency and lifetime of batteries. Tracking the structural changes, as a function of battery cycling, reveals the molecular mechanism used by the material for charge storage.