In previous work in the Dichtel lab from Catherine DeBlase and coworkers, this principle was demonstrated using anthraquinone subunits. However, the electroactive COFs were not oriented. DeBlase found that by slowly introducing the monomer concentration, the COF film thickness can be controlled. Crystalline, oriented thin films were grown on gold working electrodes and analyzed using grazing incidence diffraction (GID) at CHESS’s G2 beamline. The oriented films had 400% improved capacitance compared to that of randomly oriented COF powder.

Details of this research can be found in:
Catherine R. DeBlase, Kenneth Hernàndez-Burgos, Katharine E. Silberstein, Gabriel G. Rodríguez-Calero, Ryan P. Bisbey, Héctor D. Abruña, and William R. Dichtel, "Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films," ACS Nano 2015 9, 3178-3183. DOI: 10.1021/acsnano.5b00184.