Sidebar Menu (View Pages)
- Status
- ⌃ Science
-
⌃
Users
- 2025 CHESS User Meeting
- What's the process? - Prospective User Guide
- User Guide
- User Agreement
- BeamPASS
- Beamline Directory
- CHESS Deadlines
- X-Ray Run Schedule
- CHESS Status Page
- ⌃ Safety
- ⌃ Technical Resources
- Acknowledgment
- Travel and Lodging
- Shipping
- ⌃ Facilities
- ⌃ Public
- Industry
-
⌃
About
- Staff Directory
- Advisory Bodies
- What we do
- Job Openings
- ⌃ News
-
⌃
Publications
- Publications 2025
- Publications 2024
- Publications 2023
- Publications 2022
- Publications 2021
- Publications 2020
- Publications 2019
- Publications 2018
- Publications 2017
- Publications 2016
- Publications 2015
- Publications 2014
- Publications 2013
- Publications 2012
- Publications 2011
- Publications 2010
- Publications 2009
- Publications 2005
- Beyond the Lab
- History
Tags
Featured

CHESS user examines material under thermo-mechanical loading - with goal to develop predictive material modeling
Residual stress can have a tremendous effect on the performance and overall lifetime of materials. To understand the lattice strains that result in these stresses, researchers at CHESS are able to probe their samples with high-energy X-rays while simultaneously exposing them to heat, strain, and pressure.

Quantifying Through-Thickness Residual Stresses from Forming of Wrought Steel Armor Plate
A recent effort has verified the capability of MSN-C to characterize Department of Defense-relevant parts with typical thicknesses, bend, and welded features. The results provide a baseline for further research by the DOD and industry partners to improve forming and welding processes.

Grain-resolved temperature-dependent anisotropy in hexagonal Ti-7Al revealed by synchrotron X-ray diffraction
Synchrotron measurements of a titanium alloy reveal anisotropic coefficients of thermal expansion that would not be able to be seen with bulk measurements.

Q&A with Ryan Hurley, NSF Early CAREER Award Recipient
"The award allows me to plan long-term, to take risks in experiment design and execution, and to carefully integrate my teaching and outreach with my research."
Ryan Hurley, Assistant Professor at Johns Hopkins Whiting School of Engineering and Fellow of the Hopkins Extreme Materials Institute, is a recipient of the NSF Early CAREER Award, which recognizes early-stage faculty who integrate education with their promising research.

Fe Cations Control the Plasmon Evolution in CuFeS2 Nanocrystals
Research on the synthesis of CuFeS2, an exciting semiconductor, outlines a method to verify its phase purity and investigate its properties.

SRN Article: “Cartography” in 7-Dimensions at CHESS
Mapping of Structure in Real Space, Reciprocal Space, and Time Using High-Energy X-rays
This article was originally published in Synchrotron Radiation News.

Approaching the ideal limit for spin-orbit-coupled quantum moments in iridium halides
New research from a large team from 5 Universities and 2 National Labs reports on a new family of iridium halide materials that provide the best-yet realization of the ideal quantum limit for spin-orbit coupled magnetic moments. These Jeff=½ magnets are promising systems to engineer new kinds of superconductors and realize new kinds of magnetic interactions.

BioSAXS facility at CHEXS develops stringent anoxic sample environment
From the gut microbiome to the depths of the ocean, life has evolved to thrive in the absence of oxygen. In fact, it is not hyperbole to say that life as we know it would not exist without the oxygen sensitive metalloenzymes that we all rely on.