Quantum materials research involves manipulating and measuring the collective quantum states of electrons in materials.

Particle storage rings are highly complex scientific instruments and minute changes in temperature, position or current through one of its many magnets can

To study how protein structures are impacted by external pressure a team of researchers developed a novel diamond anvil cell optimized for the study of macromolecules

Rather than analyze diffraction data with a physics-based X-ray model to try to extract structural information chosen a priori, a team comprised of researchers from CHEXS, Cornell

The recent upgrade of the storage ring has positioned CHESS as a synchrotron facility that is well-suited for in situ studies of materials dynamics with sub-microsecond temporal r

Due to the travel restrictions imposed by the COVID-19 pandemic, the entire workshop was conducted virtually using Zoom. Over three days, the workshop consisted of both didactic lectures and hands-on tutorials.
These results fundamentally explain structural and functional differences between DNA and RNA that support their divergent biological roles.
Polymers that can self-assembly into a variety of nanostructures in solution are useful in many biomedical applications such as drug delivery.
Nanocrystals are perfect periodic arrangements of atoms that only extend a few tens of nanometers in any direction and exhibit unique electronic, optic and/or magnetic characteristics
It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure-based properties in block-copolymer-directed metal, semiconductor, and superconductor materials.
Electronic symmetry breaking in materials underlies many unconventional materials properties which can be useful in future quantum technologies employed in information technology and novel approaches to data processing.
This work provides the first convincing demonstration of protein diffuse scattering data collection and analysis, opening the door to future applications in structural biology.
Soft glassy materials such as colloidal suspensions and emulsions...are of interest both from a scientific perspective as model material systems for studying suspension stability, and from a practical viewpoint for their wide applications...
These findings lay the groundwork for conservation efforts in the context of hydro-power development in the Amazon Basin and set testable hypotheses of the potential impacts of the Madeira River dams.
Together with DNA and proteins, RNA forms the trinity of macromolecules (large and heavy molecules) essential to all forms of life on earth.
Over-coming the limitations imposed by interfacial defects is therefore an essential next step in the development of high-quality optoelectronic devices based on NC solids.
Spatial analysis of horns for lead accumulation may be useful as a qualitative marker of time-resolved exposures that may reflect specific periods of acute lead absorption.
Reducing the weight of vehicles translates into energy conservation in transportation which is beneficial for economic and environmental reasons.

Researchers employed synchrotron-based X-ray absorption spectroscopy (XAS) at CHESS to investigate the synergistic interaction of bimetallic Co1.5Mn1.5O4/C catalyst

Wood-based ionic conductors are flexible, lightweight, biocompatible and based on sustainable materials that can enable large-scale manufacture and suitable for low-grade thermal energy harvesting.
Characteristics makes XTM optics attractive as potential X-ray optics for high-pass harmonic selectors and tunable wide bandpass monochromators. With further instrumentation development, they can be potentially applied to high heat load filtering applications at synchrotrons.
This work forms the starting point to understanding the mechanisms of charge transport in ternary spinel systems.
Using CVD diamonds in X-ray monochromators enables affordable compact systems operable in a laboratory with conventional X-ray sources, under extreme conditions as high radiation heat load optics at synchrotrons, or, possibly, as compact remote X-ray instrumentation for planetary missions.
Developing materials that exhibit superconductivity at room temperature for wide spread commercial use would allow a significant reduction in energy consumption throughout the power grid.
By understanding how an essential enzyme is inactivated in an organism-specific manner, the researchers hope to contribute to the development of new anti-pathogenetic therapies.

Serial crystallography is a method for obtaining structural information on an atomic level of a protein, without the need for large protein crystals.

Li metal has long been considered the ideal anode material for Li rechargeable batteries. In this study, researchers employed synchrotron-based X-ray imaging methods at CHESS to image the evolution

Some of the highest-temperature superconductors and other strongly correlated quantum materials exhibit an anisotropic electronic phase, called nematic phase, where electrons spontaneously break th

3-D X-ray absorption and diffraction-based characterization techniques are powerful tools to quantify the micromechanical response of Alternate Cementitious Materials (ACMs).

Measuring very large data sets of X-ray diffuse scattering allowed researchers to identify how different forms of local order in ferroelectrics correlate with their properties.

Shape memory alloys see use in numerous aerospace and biomedical applications, but their wider use is limited by functional fatigue.